2. Strain gage amplifier DMS

Strain gage amplifi ers DMS01 and DMS 03

DMS01

Single channel amplifier W x D x H (mm) 120 x 120 x 60 weight 350 g

(power supply included)

DMS03

Triple channel amplifier W x D x H (mm) 240 x 120 x 60 weight 550 g

(power supply included)

Accessories

- LEMO connectors 0S304 fitting to DMS signal input sockets
- 4-wire cables, shielded with one side LEMO 0S304 connector, 1 side blunt length 1.5 m (other lengths on request)
- 4-wire extension cables, shielded with LEMO 0S304 connector/coupler length 2 m, 3 m, 4 m

Strain and Position Detection

• Analog Signal Output:

0V/+5V equivalent piezo actuator's max. strain Impedance: 1 kOhms Connector BNC

Readout

3 1/2 digit LC-display

Amplifier adjusts via mini-potentiometers

Zero setting

The absolute length of a piezo stack varies with the preload conditions during mounting, thermal status etc.

Therefore a zero point setting procedure can be carried out for piezo actuator's operation to compensates for all mechanical offsettings during the installation of the actuator.

Variable gain

The original signal height of a strain gage arrangement depends mainly on the strain gage characteristics (k-factor) and the number of active bridge elements (full bridge, half bridge, 2-quarter bridge etc).

The DMS-amplifiers shows a variable gain adjust for adapting the DMS output exactly to 0V / +5V range for a defi ned piezo stroke/strain.

Calibration of display for position readout in um

A steady or slow varying position with submicrometer resolution is shown in terms of fractions of µm on a large LC-display. A simple calibration procedure allows the user to

adapt the readout to a distinct piezo actuator / sensor confi guration.

Power supply:

12V

3 Lemo 4 Lemo 2_{Lemo}

Schematic arrangement of a 4 active elements Wheatstone bridge

Contacts:

Connector LEMO 0S 304 pin-numbers or stranded wires/insulation color (for blunt ends)

Supply voltage in Signal out

bridge diagonal 1-2 / red-black bridge diagonal 3-4 / white-green

1 Lemo

Position Sensing by strain gages

Strain gage circuits produce very small signals in the mV and μ V-range. A high quality amplifier like the DMS device is needed to convert this original signal into a reasonable standard analog output voltage level (e.g. 5 V) or other kind of usable information.

- All kinds of strain gages with a resistance of 350 Ohms up to 5 kOhms can be operated by the DMS amplifiers.
- The DMS amplifi ers are a complete detection units comprising the strain gage electrical supply and the signal detection unit. No other attributes are necessary to run a strain gage measurement.

- The DMS 01 and 03 amplifiers show high resolution capability down to a strain variation < 10⁻⁶.
- High dynamics with a 30 kHz bandwidth.
- The DMS amplifiers are stand-alone devices. This allows to locate the amplifiers rather near to the strain gage arrangement independently of other piezo-electronics. Hereby, any electrical noise pick up due to long distances from gage to amplifier is strongly reduced.
- ► Therefore, the strain gage amplifiers DMS are excellently suitable to be combined with piezo actuator borne strain gages for high resolution, high dynamic position monitoring.

4 active-elements strain gage-bridge configuration on a piezo stack Typical gage resistance: 1.2 kiloOhms.

Basic position control equipment. Piezo-actuator with strain gage position sensor. Position read out by DMS 01 unit. Piezo-actuator supply electronics SVR 150 (left).